Abstract:Graph Federated Learning (GFL) enables distributed graph representation learning while protecting the privacy of graph data. However, GFL suffers from heterogeneity arising from diverse node features and structural topologies across multiple clients. To address both types of heterogeneity, we propose a novel graph Federated learning method via Semantic and Structural Alignment (FedSSA), which shares the knowledge of both node features and structural topologies. For node feature heterogeneity, we propose a novel variational model to infer class-wise node distributions, so that we can cluster clients based on inferred distributions and construct cluster-level representative distributions. We then minimize the divergence between local and cluster-level distributions to facilitate semantic knowledge sharing. For structural heterogeneity, we employ spectral Graph Neural Networks (GNNs) and propose a spectral energy measure to characterize structural information, so that we can cluster clients based on spectral energy and build cluster-level spectral GNNs. We then align the spectral characteristics of local spectral GNNs with those of cluster-level spectral GNNs to enable structural knowledge sharing. Experiments on six homophilic and five heterophilic graph datasets under both non-overlapping and overlapping partitioning settings demonstrate that FedSSA consistently outperforms eleven state-of-the-art methods.
Abstract:Federated graph learning (FGL) has recently emerged as a promising privacy-preserving paradigm that enables distributed graph learning across multiple data owners. A critical privacy concern in federated learning is whether an adversary can recover raw data from shared gradients, a vulnerability known as deep leakage from gradients (DLG). However, most prior studies on the DLG problem focused on image or text data, and it remains an open question whether graphs can be effectively recovered, particularly when the graph structure and node features are uniquely entangled in GNNs. In this work, we first theoretically analyze the components in FGL and derive a crucial insight: once the graph structure is recovered, node features can be obtained through a closed-form recursive rule. Building on this analysis, we propose GraphDLG, a novel approach to recover raw training graphs from shared gradients in FGL, which can utilize randomly generated graphs or client-side training graphs as auxiliaries to enhance recovery. Extensive experiments demonstrate that GraphDLG outperforms existing solutions by successfully decoupling the graph structure and node features, achieving improvements of over 5.46% (by MSE) for node feature reconstruction and over 25.04% (by AUC) for graph structure reconstruction.
Abstract:Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
Abstract:To improve the quality of Differentially private (DP) synthetic images, most studies have focused on improving the core optimization techniques (e.g., DP-SGD). Recently, we have witnessed a paradigm shift that takes these techniques off the shelf and studies how to use them together to achieve the best results. One notable work is DP-FETA, which proposes using `central images' for `warming up' the DP training and then using traditional DP-SGD. Inspired by DP-FETA, we are curious whether there are other such tools we can use together with DP-SGD. We first observe that using `central images' mainly works for datasets where there are many samples that look similar. To handle scenarios where images could vary significantly, we propose FETA-Pro, which introduces frequency features as `training shortcuts.' The complexity of frequency features lies between that of spatial features (captured by `central images') and full images, allowing for a finer-grained curriculum for DP training. To incorporate these two types of shortcuts together, one challenge is to handle the training discrepancy between spatial and frequency features. To address it, we leverage the pipeline generation property of generative models (instead of having one model trained with multiple features/objectives, we can have multiple models working on different features, then feed the generated results from one model into another) and use a more flexible design. Specifically, FETA-Pro introduces an auxiliary generator to produce images aligned with noisy frequency features. Then, another model is trained with these images, together with spatial features and DP-SGD. Evaluated across five sensitive image datasets, FETA-Pro shows an average of 25.7% higher fidelity and 4.1% greater utility than the best-performing baseline, under a privacy budget $ε= 1$.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) significantly enhances the reasoning capability of Large Language Models (LLMs). Current RLVR approaches typically conduct training across all generated tokens, but neglect to explore which tokens (e.g., prefix tokens) actually contribute to reasoning. This uniform training strategy spends substantial effort on optimizing low-return tokens, which in turn impedes the potential improvement from high-return tokens and reduces overall training effectiveness. To address this issue, we propose a novel RLVR approach called Progressive Prefix-token Policy Optimization (PPPO), which highlights the significance of the prefix segment of generated outputs. Specifically, inspired by the well-established human thinking theory of Path Dependence, where early-stage thoughts substantially constrain subsequent thinking trajectory, we identify an analogous phenomenon in LLM reasoning termed Beginning Lock-in Effect (BLE). PPPO leverages this finding by focusing its optimization objective on the prefix reasoning process of LLMs. This targeted optimization strategy can positively influence subsequent reasoning processes, and ultimately improve final results. To improve the learning effectiveness of LLMs on how to start reasoning with high quality, PPPO introduces two training strategies: (a) Progressive Prefix Retention, which shapes a progressive learning process by increasing the proportion of retained prefix tokens during training; (b) Continuation Accumulated Reward, which mitigates reward bias by sampling multiple continuations for one prefix token sequence, and accumulating their scores as the reward signal. Extensive experimental results on various reasoning tasks demonstrate that our proposed PPPO outperforms representative RLVR methods, with the accuracy improvements of 18.02% on only 26.17% training tokens.
Abstract:Recently, offline reinforcement learning (RL) has become a popular RL paradigm. In offline RL, data providers share pre-collected datasets -- either as individual transitions or sequences of transitions forming trajectories -- to enable the training of RL models (also called agents) without direct interaction with the environments. Offline RL saves interactions with environments compared to traditional RL, and has been effective in critical areas, such as navigation tasks. Meanwhile, concerns about privacy leakage from offline RL datasets have emerged. To safeguard private information in offline RL datasets, we propose the first differential privacy (DP) offline dataset synthesis method, PrivORL, which leverages a diffusion model and diffusion transformer to synthesize transitions and trajectories, respectively, under DP. The synthetic dataset can then be securely released for downstream analysis and research. PrivORL adopts the popular approach of pre-training a synthesizer on public datasets, and then fine-tuning on sensitive datasets using DP Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL introduces curiosity-driven pre-training, which uses feedback from the curiosity module to diversify the synthetic dataset and thus can generate diverse synthetic transitions and trajectories that closely resemble the sensitive dataset. Extensive experiments on five sensitive offline RL datasets show that our method achieves better utility and fidelity in both DP transition and trajectory synthesis compared to baselines. The replication package is available at the GitHub repository.
Abstract:In differentially private (DP) tabular data synthesis, the consensus is that statistical models are better than neural network (NN)-based methods. However, we argue that this conclusion is incomplete and overlooks the challenge of densely correlated datasets, where intricate dependencies can overwhelm statistical models. In such complex scenarios, neural networks are more suitable due to their capacity to fit complex distributions by learning directly from samples. Despite this potential, existing NN-based algorithms still suffer from significant limitations. We therefore propose MargNet, incorporating successful algorithmic designs of statistical models into neural networks. MargNet applies an adaptive marginal selection strategy and trains the neural networks to generate data that conforms to the selected marginals. On sparsely correlated datasets, our approach achieves utility close to the best statistical method while offering an average 7$\times$ speedup over it. More importantly, on densely correlated datasets, MargNet establishes a new state-of-the-art, reducing fidelity error by up to 26\% compared to the previous best. We release our code on GitHub.\footnote{https://github.com/KaiChen9909/margnet}
Abstract:Rydberg atomic sensors have been seen as novel radio frequency (RF) measurements and the high sensitivity to a large range of frequencies makes it attractive for communications reception. However, the signal sensing process in Rydberg system involves sequential transduction from electromagnetic waves to optical signals and finally to electrical signals. The unipolar characteristic of the optical interface inherently restricts conventional OFDM reception. Therefore, adopting unipolar OFDM schemes, inspired by optical communication systems, becomes essential for compatible signal transmission. In this work, we investigate the amplitude modulation-to-amplitude modulation (AM-AM) characteristics of Rydberg atomic sensors, establishing an empirical approximation function. Building on the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) framework, we propose a novel local oscillator direct current-biased OFDM (LODC-OFDM) scheme specifically optimized for Rydberg-based sensing, effectively addressing the broadband OFDM reception challenge. Then, we adopt Bussgang theorem to analyze the nonlinear distortion of LODC-OFDM signals and the results in closed-form solutions are derived for AM/AM curves approximated by Taylor series expansion and for the ideal pre-distortion case. In real experiments, the experimental and theoretical results fit well.
Abstract:Large Audio Language Models (LALMs), powered by the chain-of-thought (CoT) paradigm, have shown remarkable reasoning capabilities. Intuitively, different problems often require varying depths of reasoning. While some methods can determine whether to reason for a given problem, they typically lack a fine-grained mechanism to modulate how much to reason. This often results in a ``one-size-fits-all'' reasoning depth, which generates redundant overthinking for simple questions while failing to allocate sufficient thought to complex ones. In this paper, we conduct an in-depth analysis of LALMs and find that an effective and efficient LALM should reason smartly by adapting its reasoning depth to the problem's complexity. To achieve this, we propose a difficulty-adaptive reasoning method for LALMs. Specifically, we propose a reward function that dynamically links reasoning length to the model's perceived problem difficulty. This reward encourages shorter, concise reasoning for easy tasks and more elaborate, in-depth reasoning for complex ones. Extensive experiments demonstrate that our method is both effective and efficient, simultaneously improving task performance and significantly reducing the average reasoning length. Further analysis on reasoning structure paradigm offers valuable insights for future work.
Abstract:Semi-supervised medical image segmentation is a crucial technique for alleviating the high cost of data annotation. When labeled data is limited, textual information can provide additional context to enhance visual semantic understanding. However, research exploring the use of textual data to enhance visual semantic embeddings in 3D medical imaging tasks remains scarce. In this paper, we propose a novel text-driven multiplanar visual interaction framework for semi-supervised medical image segmentation (termed Text-SemiSeg), which consists of three main modules: Text-enhanced Multiplanar Representation (TMR), Category-aware Semantic Alignment (CSA), and Dynamic Cognitive Augmentation (DCA). Specifically, TMR facilitates text-visual interaction through planar mapping, thereby enhancing the category awareness of visual features. CSA performs cross-modal semantic alignment between the text features with introduced learnable variables and the intermediate layer of visual features. DCA reduces the distribution discrepancy between labeled and unlabeled data through their interaction, thus improving the model's robustness. Finally, experiments on three public datasets demonstrate that our model effectively enhances visual features with textual information and outperforms other methods. Our code is available at https://github.com/taozh2017/Text-SemiSeg.